cis regulatory elements:

How to find them: Past, presence & future

Sebastiaan Meijsing Transcriptional regulation group meijsing@molgen.mpg.de

Max Planck Institute for Molecular Genetics

Cis-regulatory elements: Different flavors

Maston et al., Annu. Rev. Genom. Human Gent. (2006)

Today we mostly focus on cis regulatory elements that act as enhancers

Outline

• Techniques to find cis regulatory elements (& transcription factor binding sites)

Function:

• Linking binding and regulation

Identification of cis regulatory elements:

Approach1: - Conservation analysis (evolution)

Approach 2: - Biophysical approaches (e.g. binding)

Approach 3: - Chromatin-based methods

Approach 4: Functional approaches (reporter genes & mutagenesis)

Clues from conservation analysis

Petersen et al., Plos One (2009)

The good: Genome-wide approach (cheap...)

The bad: False positives / false negatives /overlapping functional elements

Identification of cis regulatory elements:

Approach1: - Conservation analysis (evolution)

Approach 2: - Biophysical approaches (e.g. binding)

Approach 3: - Chromatin-based methods

Approach 4: Functional approaches (reporter genes & mutagenesis)

Biophysical approaches: DNAse footprinting-I

DNAse footprinting (classic version):

- What it tells you: Which Regions of a DNA-fragments are bound by protein(s) (using nuclear extracts)
 - Where on the DNA your protein of interest binds (using purified proteins)

The good: high resolution information for area of interest The bad: In vitro (can bind vs actually bound in vivo? / low throughput)

Biophysical approaches: DNAse footprinting-II

Mapping DNAse-I hypersensitive regions genome-wide

Active enhancers / promoters typically localize to DNAseI hypersensitive regions ("Open chromatin")

Biophysical approaches: DNAse footprinting-II

Mapping DNAse-I hypersensitive regions genome-wide

- What it tells you: Which Regions of the genome can be cut (implying that they are "open")
 - Where enhancers & promoters are located in the genome

The good: Genome-wide approach / maps enhancers & promoters The bad: Biases in cutting preference DNAse-I / Mapping /sequencing

Biophysical approaches: DNAse footprinting-III

Mapping DNAse-I sensitivety at high resolution

- What it tells you: Which Regions of the genome can be cut (DNAse-I hypersensitive sites)
 - Within such regions: Footprints of bound proteins

The good: Genome-wide approach

The bad: expensive / cause of protection unclear / Biases DNAse-I

How it works:

Biophysical approaches: EMSAs

Electrophoretic Mobility Shift Assays (Gelshifts)

What it tells you: - Affinity of protein of interest for a particular sequence

How it works:

The good: Quantitative data / high resolution The bad: in vitro (can bind vs binds in vivo) / low throughput

Biophysical approaches: SELEX

SELEX (Systematic Evolution of Ligands by Exponential enrichment)

What it tells you: - To which DNA sequences a protein of interest can bind

The good: No prior knowledge of recognition sequence needed The bad: In vitro technique / bias towards high-affinity sites...

Biophysical approaches: DNA-pull down + mass-spec

DNA pull-down assays & mass-spectrometry

What it tells you: - Which proteins bind to a DNA sequences of interest

The good: No prior knowledge needed

The bad: In vitro assay

Hormone receptors:

A nice model system to study Transcription

Glucocorticoid receptor signaling: Transcription

Good model system : Ligand as on/off switch

Chromatin Immunoprecipitation (ChIP)

Information from: Chromatin Immunoprecipitation (ChIP)

The good: Genome-wide approach

The bad: Biases e.g. in shearing efficiency of DNA / requires good Antibody Resolution (200-300bp windows identified)

Information from: Chromatin Immunoprecipitation (ChIP)

Improving resolution: ChIP-exo

Issue: ChIP-seq: Resolution (200-300bp peaks):

Solution?: Improve Resolution using ChIP-exo (footprints)

Rhee and Pugh. *Cell* (2011). Mymryk and Archer. *NAR* (1994).

Improved resolution (footprint)

Footprints for other sequences ??

Improving resolution: ChIP-exo

The good: Improved resolution

The bad: Only appears to work for subset of peaks (immature technology)????

Identification of cis regulatory elements:

Approach1: - Conservation analysis (evolution)

Approach 2: - Biophysical approaches (binding)

Approach 3: - Chromatin-based methods

Approach 4: Functional approaches (reporter genes & mutagenesis)

Chromatin & genomic elements

Chromatin / histone-modification based identification of cis-regulatory elements

- What it tells you: Candidate cis-regulatory elements
- How it works: ChIP-seq using anti-bodies against post-translationally modified histones

Chromatin & genomic elements

Consortia cataloguing histone modifications:

(cataloguing functional regions in the genome)

The good: Genome-wide approach

The bad: Correlation ≠ causation (biased) / specificity of antibodies

Outline

 Techniques to find cis regulatory elements (& transcription factor binding sites)

Function:

• Linking binding and regulation

Functional characterization of cis regulatory elements:

Question: What enhancer allows GR to control the expression of SALL1 gene?

Functional approaches: Reporter assays

Question: Can GR activate from this sequence??

Approach: Test it in Luciferase reporter assay

Result: Region is indeed capable to activate reporter

Functional approaches: Reporter assays

Question: What sequence(s) allow GR to activate ???

Approach: Test effect of mutations in Luciferase reporter assay

AGAACAtttTGTTCT → AGAAAAtttTTTCT

Result: Candidate sequence indeed required for GR-dependent transcriptional activation

Functional approaches: Reporter assays...

Multiplex to test large sets of test sequences.....

Functional characterization of cis regulatory elements:

- **Observation:** GR induces the expression of SALL1 gene in limbs
- Question: Does enhancer allow GR to control the expression of SALL1 gene in limbs?
- Approach: LacZ reporter with enhancer sequence of interest is injected into mouse zygotes & expression of lacZ monitored.

Result: Enhancer can indeed drive expression in limbs (& brain?)

Reporter assays:

Issues with reporter assays...

Take home message:

These reporter studies show if a regulatory sequence CAN drive expression for

instance in a particular tissue NOT if it actually does......

Q: Does enhancer play role in regulating gene ?

Additional information that would make it more likely that it actually does??

Proximity of enhancer to promoter (in 3D space)

Chromatin Conformation Capture (3C)

What it tells you: If two sequences are near one another in nucleus

Hi-C & long range interactions

Werken et al. Nature Methods 2012

Finding missing link(s) between binding and regulation.....

- Improved correlation between binding and regulation

Robert Schöpflin

Functional characterization of cis regulatory elements:

How to test this? Delete enhancer in natural context..... (Mouse transgenics)

Mouse transgenics

Mouse transgenics

Mouse transgenics

The good: Experiments done in endogenous setting The bad: Slow, expensive, risky, need to go through mice......

The future is now..... Genome editing...

Ideally we would be able to change individual base pairs of our interest in any cell type of interest

Therapeutic interest (Future): Repairing disease causing mutations (gene therapy e.g. oncogenes)

Mechanistic interest: Being able to change putative regulatory sequences to test their function

Enhancer required ?

Challenges:

- 1. Directing the nuclease to the appropriate location
- Achieved by fusing nuclease to zinc finger DNA binding domains that can be engeneered to recognize site of interest
 - 2. Specificity (induce break only at site of interest)
 - Achieved by : bring obligatory homodimeric Fokl sites together

Recent development 1.

TALENs: Better (modular DNA recognition) but still tricky

Recent development 2.

CRISPR/CAS9 editing technology (complementary RNA guided)....

(derived from a kind of bacterial adaptive immune system)

Promoter bashing 2.0 (genomic)

A GILZ

Promoter bashing 2.0:

- GR binding site important for regulation

Promoter bashing 2.0:

- GR binding site NOT important for regulation

Promoter bashing 2.0:

- Context-dependent role for GR binding site

Cell-type-specific interactions

Maika Rothkegel / Verena Thormann

The good: Takes place in natural context / relatively fast / works for cell lines & whole animals

The bad: Off target effects (specificity??)

Overview

- Many techniques available to identify & characterize cis regulatory elements

- Each with their strengths & weaknesses.....

Which one(s) to use depends on question asked, (time available, budget...)

- Future / current challenges:

- Linking Cis regulatory elements to genes

- How does integration of multiple signals at individual cis regulatory elements influence transcriptional output?

.